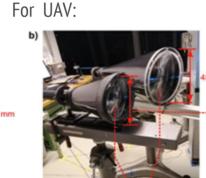
A REMOTE AND REAL-TIME OPTICAL DETECTION OF ALPHA EMITTING RADIONUCLIDS IN THE ENVIRONMENT

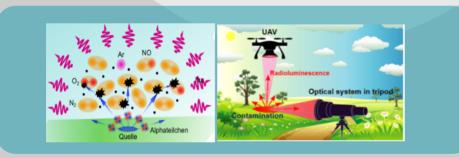
István R. NIKOLÉNYI1*, Annika KLOSE, Zoltán GÉMESI, Péter GÁL, FatonS. KRASNIQI

EMPIR2020 19ENV02 Remote Alpha project


Need

Alpha emitting radionuclides represent the greatest radiological threat for human beings if they enter the human body. Currently, detection systems to measure large-scale contamination are not available.

Receiving optical system: based on lens objectives, and a modular mirror system developed at PTB



Fused silica lens

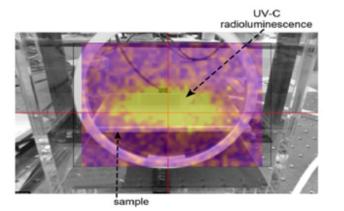
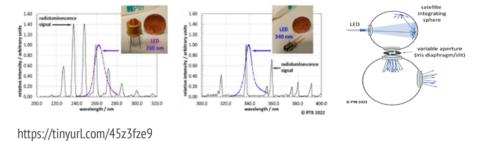
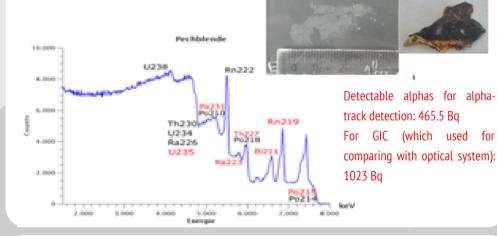

PMMA Fresnel len

Figure 1: Lens-based radioluminescence detection setups developed at the PTB (M. Luchkov, V. Dagendorf, F. Krasniqi). (a) Fused-silica lens (Abet Technologies) system mounted on a goniometer and rotation stage (Newport M-BGM160PE and RVS80CC). (b) PMMA Fresnel lens (Orafol Fresnel Optics) systems. All lens systems can be coupled to selected PMTs and UV-C or UV-A interference filters.

https://tinyurl.com/2pskbnxm

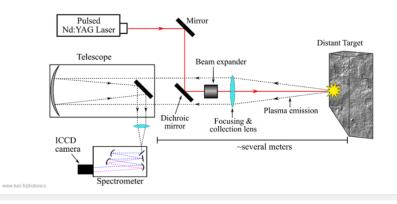


Laboratory results: for solar blind region (UV-C: below280 nm): N2-NO mixture to enhance the detection limit. (about 0.4 m)



Developing and establishing a calibration system for the novel-type radioluminescence detector systems (PTB, D.Taubert 2022, Blog)

by quasi monochromatic isotropic and large area optical source with variable output namely: UV LEDs transforming into large area uniform and diffuse optical emitter using double integrating sphere with variable with variable aperture



Characterization and measuring contaminated common environmental surfaces under well-known conditions in the lab (LUH- Annika Klose) Before measuring the pitchblende samples with the optical system in UAV and UVC, they were analysed via alpha-track detection regarding homogeneity. The surface count rate was

Feasibility study for a laser-induced fluorescence spectroscopic method for the detection of alpha emitters (TAU): re-excitation of excited nitrogen states triggering by alpha-particles by laser $c_{r_{j} \text{ Tamper University}}$

Laser-induced fluorescence (LIF)

Fig. 6. (color online) Image of a wide area reference alpha-emitting source composed of the uranium isotopes U-234, U-235 and U-238, with a total activity of 330 Bq over an active area of $19.1 \times 11.9 \text{ cm}^2$. The concentration of NO at the N₂ atmosphere was about 3 ppm. The scene was scanned using scanning PMT system at about 0.4 m distance with a resolution of 1 deg and 30 s integration per point.

K_Nuclear Inst. and Methods in Physics Research, A 987 (2021) 164821

Project coordinator:

Physikalisch-Technische Bundesanstalt, Germany(PTB) https://remotealpha.drmr.nipne.ro/

Partners: Government Office of the Capital City Budapest Metrological and Technical Supervisory Department (BFKH); Horia Hulubei National Institute of R&D for Physics and Nuclear Engineering (IFIN-HH); Alfa Rift Oy (Finland); Gottfried Wilhelm Leibniz University, Hannover (Germany); Tampere University, Tampereen korkeakoulusäätiö sr (Finland);-Universitat Politècnicade Catalunya (Spain); Hungarian University of Agricultural and Life Sciences (Hungary)