WALL CHIYODA TECHNOL CORPORATION

The 15th International Workshop on Ionizing Radiation Monitoring Hosada Hall, Oarai, Japan. 25th-26th March, 2023

Remote detection of alpha and gamma radioactivity by using rotary-wing unmanned aerial systems

Arturo Vargas¹

arturo.vargas@upc.edu

P. Royo¹, M. Luchkov², F. Krasniqi², V. Dangendorf²

(1)Institute of Energy Technologies (INTE), Technical University of Catalonia (UPC), Spain

(2) National Metrology Institute (PTB), Germany

In the framework of 2 European Projects airborne detectors installed in UAVs have been developed and tested

- Gamma-spectrometric detectors
- Localizer-detector
- Alpha remote detector

 The research has been carried out in the framework of 2 European projects:

(2017-2021) (http://www.preparedness-empir.eu/)

 Spectrometric detectors were adapted, mounted on selected UAVs and calibrated in measurement campaign. In addition a localizer detector was developed and tested.

```
((( RemoteALPHA (2020-2023 in progress) <a href="https://remotealpha.drmr.nipne.ro/">https://remotealpha.drmr.nipne.ro/</a>)
```

 A remote alpha airborne monitor to be mounted in UAVs have bee developed and will be tested in experimental campaigns during the next months.

Spectrometric detectors

IWIRM 15 Oarai, Japan. 25th-26th March, 2023

PTB (Germany), UPC (Spain)

Drone: DJI Matrice 600 Pro (payload: 6 kg)

Detector CeBr₃ /Nal. Total weight: 1.5 kg

INDUSTRY

Kromek (United Kingdom**)**AARM with CsI or CZT detectors

CMI & Nuvia (Czech Republic)

Drone: SWISSDRONE SDO 50 v2

Petrol engine. Payload~45 kg

Detector HPGe. Total weight: 25 kg

PARTNERS

Nuvia (Czechk republic) NuEM DORNES G

Former Uranium mine campaign

On-line parameters:

For $H^*(10)$ calculation, conversion coefficient method is recommended because is accurate, precise and robust.

$$\dot{H}^*(10) = \sum_{i=1}^j w_i \, n_i \, E_i$$

Man Made Count Rate (MMCR) is a robust and fast method to detect artificial radioactivity. When no artificial radionuclides, then:

MMCR=
$$\sum_{320}^{1360} n(E) - ratio \sum_{1360}^{3000} n(E)$$
 ratio= $\frac{\sum_{320}^{1360} n(E)}{\sum_{1360}^{3000} n(E)}$

$H^*(10)$ and MMCR results

IWIRM 15
Oarai, Japan. 25th-26th March, 2023

H*(10) rate in the area to find radioactive sources

 $H^*(10)$ rate and height a.g.l.

The MMCR method detects the artificial sources in a simple way while with the $H^*(10)$ analysis its detection is not possible. Spectra analysis by waterfall plot is also useful

Full Spectra Analisys (FSA) → Monte Carlo (PENNOLPE/penEasy) simulations to obtain cps per Bq/kg or Bq or Bq/m² for each radionuclide and geometry. Then, Activities are estimated that minimize the measured and simulated spectra by a Genetic Evolution Algorithm

8 x CsI detectors separated by shielding material to calculate the source position

Localizer mounted onto gimbal and installed on the DJI Matrice 600 Pro

Real flight at the Barcelona Drone Center to localize a 345 MBq Cs-137 source

2) Source: estimated position (black stars)

1) Drone stops when source is detected

Video preparedness: https://www.youtube.com/watch?v=IV45uvionKI&t=46s.

A. Vargas et al. COMPARISON OF AIRBORNE RADIATION DETECTORS CARRIED BY ROTARY-WING UNMANNED AERIAL SYSTEMS PERFORMED IN SPAIN. Radiation Measurements 145 (2021)

Radioluminescence at a glance

Schematic representation of **air ionization by α-particles**.

Air molecules emit fluorescent light (radioluminescence) in the UV range between 200 nm and 400 nm.

Range in air:

α-particles UV light

 \rightarrow 0,04 m

 \rightarrow 500 m

IWIRM 15 Oarai, Japan. 25th-26th March, 2023

UV-C wavelength range (100 – 280 nm) Daytime measurements are feasible

UV-A wavelength range (315 – 400 nm) Only for measurements in dark conditions

Solar radiation spectrum (background)

IWIRM 15 Oarai, Japan. 25th-26th March, 2023

Telescope

Scaled system for the drone

Mounted on the drone and tested in the DroneLab (UPC - Barcelona Tech)

IWIRM 15 Oarai, Japan. 25th-26th March, 2023

Testing of optical detection systems with Am-241 sources (1 MBq, 10 MBq and 100 MBq)

UVC (260 nm) scan of 1 MBq Am-241

Visualization of the detected count rate in real time during the flight with 5 UVC source emitters

Area 15 m x 30 m
Separation between lines 70 cm
Height a.g.l. 5 m
speed 1 m/s
Measurement of count rate is registered every 100 ms

On-line visualization

Acknowledgments

The projects16ENV04 **Preapredness** and 19ENV02 **RemoteALPHA** have received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

16ENV04 Preapredness and 19ENV02 RemoteALPHA denotes the EMPIR project reference.

Preparedness partners

RemoteAlpha partners

