

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Ultraviolet imaging of alpha sources via radioluminescence

Maksym Luchkov

maksym.luchkov@ptb.de Radiation Protection Dosimetry National Metrology Institute of Germany (PTB) Braunschweig, Germany

Claudia Olaru Radioisotopes and Radiation Metrology Department, IFIN-HH Romania

Content

Remote and real-time optical detection of alpha-emitting radionuclides in the environment (2020 –)

WP1. New instrumentation for the optical detection of alpha particle emitters in the environment

WP2. Calibration system for the novel-type radioluminescence detector systems

WP3. Mapping of alpha contaminations in the environment using UAVs

WP4. Feasibility study of laser-based techniques for detection of alpha emitters

Instrumentation 1/2

UVFS lens, Ø 240 mm Scanning

Al mirrors, Ø 75 mm x 7 pcs Scanning + Drone-based

Enclosure box for radioactive sources:

- ✓ Handling open sources
- Configuring luminescent environment with the gas flow system
- ✓ Fused silica window, 90% transmission

<u>Plexiglass sides</u>

L25 x W21 x H27 cm

UVFS window @ 45°

L20 x W20 cm

Blending UV and camera images

Stereo depth image (2 IR cameras + texture projector)

3D model of the environment, a.k.a. "pointcloud"

2D (pitch/yaw) UV scan

The known offset of the camera and UV imagers allows ray tracing

The scanning **objective** is to **distinguish the source** over the background within the **reasonable** (*better: shortest*) **time** period

The **averaging** of a neighboring pixel group (blurring) is **necessary** to get a **uniform background** and **reveal** scan **features**

Stefan Röttger @ PTB

Calibration coefficients (NTP)

Optics / Filtering / Gas	Sensitivity, $\frac{s^{-1}}{MBq MeV}$
Lens / UVA / Air	166 ± 12
Lens / UVC / Air	2.03 ± 0.17
Lens / UVC / N ₂ NO (sat.)	12000 ± 800

$$R_{Po210} = \frac{S[UVC / N_2NO \text{ (sat.)}]}{S[UVA / Air]} = 72 \pm 7$$

210PO Alpha activity standard

Traceable to national standard

Pure α-emitter!

E_α = 5304 keV **p**_α = 99.9988%

Calibration 2/4

10⁹ 🛱

10⁸

10⁷

10⁶

Simulated point s

101

source activity

Calibration 3/4

Adjustable photon flux!

- Calibrated against the activity standard of Po-210
- Simulates activity from **80 kBq** to **800 MBq**

Transfer

Standard

IFIN-HH

Calibration coefficients

Ontics / Eiltering / Gas	Someitivity $\frac{\mathrm{cm}^2 \mathrm{s}^{-1}}{\mathrm{cm}^2 \mathrm{s}^{-1}}$
Optics / Intering / Cas	kBq MeV
Lens / UVA / Air	5.2 ± 1.0
Lens / UVC / N ₂ NO (sat.)	332 ± 27

$$R_{Pu239} = \frac{S[UVC / N_2NO \text{ (sat.)}]}{S[UVA / Air]} = 64 \pm 13$$

 $R_{Pu210} = 72 \pm 7$

²³⁹Pu

Alpha reference source

Traceable to national standard

$$A_s = (31.1 \pm 1.4) \frac{\text{Bq}}{\text{cm}^2} \qquad \overline{E}_{\alpha} = 5149 \text{ keV}$$

Deposited activity of Am-241

Sample	Sand	Sand	Sand	Soil	Soil	Soil	Leaves	Leaves	Leaves
Sample	1	2	3	1	2	3	1	2	3
Activity (kBq)	-	1.3	9.5	-	1.3	11.4	-	0.67	11.4
45 mm									

Leaf samples: Air

$A_{\text{point}} = (1.42 \pm 0.16) \text{ kBq}$ Emissivity = $(12.5 \pm 1.4) \%$

27 March 2023

ICRM 2023: Ultraviolet imaging of alpha sources via radioluminescence O-93

NOT DETECTED in AIR

ЫК

 $A_{point} = (24 \pm 3) \text{ Bq}$ Emissivity = $(3.6 \pm 0.4) \%$

Soil samples: N₂NO

in AIR

 $A_{\text{point}} = (107 \pm 18) \text{ Bq}$ Emissivity = $(0.94 \pm 0.16) \%$

ICRM 2023: Ultraviolet imaging of alpha sources via radioluminescence O-93

Sand samples: N₂NO

NOT DETECTED

$A_{\text{point}} = (106 \pm 19) \text{ Bq}$ Emissivity = $(1.12 \pm 0.20) \%$

ICRM 2023: Ultraviolet imaging of alpha sources via radioluminescence O-93

PB Depleted Uranium samples 1/2

<u>Middle</u>

Depleted uranium bullet

<u>Sides</u>

DepU shielding/collimators of

industrial radiography sources

Depleted Uranium samples 2/2

Left DepU piece is investigated

Now estimated as a distributed

source

$$A_s = (20 \pm 5) \frac{\text{Bq}}{\text{cm}^2}$$

FIN-ł

Other sources

IFIN-HH

- > ²⁴¹Am source
- ➢ 10 cm x 2 cm
- ➤ Au cover 2 µm
- $\succ A = 1 \text{ MBq}$

LUH-IRS

- Env. samples(*Pitchblende*)
- Polished

$$\succ A_s \approx 60 \frac{\mathrm{Bq}}{\mathrm{cm}^2}$$

Acknowledgements

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Projects 19ENV02 **RemoteALPHA** have received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

19ENV02 RemoteALPHA denotes the EMPIR project reference.

RemoteALPHA partners

Thanks for attention!

https://remotealpha.drmr.nipne.ro

((((🛞 RemoteALPHA

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Remote and real-time optical detection of alpha-emitting radionuclides in the environment

Interested in the project?

Join the stakeholder

community:

- Workshop / exhibitionJune, Barcelona, Spain
- Feedback / discussion

Visit the project website

for more information:

- ✓ Publications
- ✓ Presentations
- ✓ Posters
- ✓ ...and more!

Home	Project -	Information -	Members Area	Blog	Contact	GDPR