European Radiation Dosimetry Group Training Course Athens 2023



## Drone Mounted Systems Alpha Detection

Lecturer: Claudia OLARU IFIN-HH, Romania





EURADOS Training Course at EEAE Athens 18th-21st September 2023





### **Table of contents**

### 01

Intro. Alpha-induced Radioluminescence Radioluminescence Detection

02

03

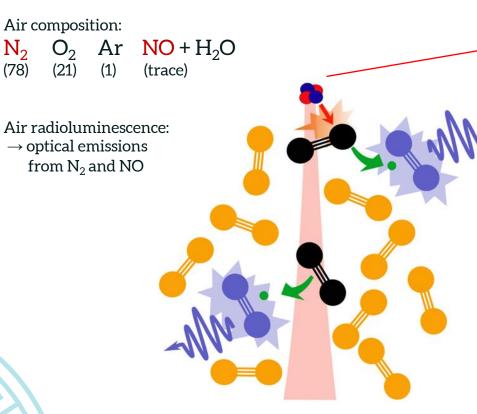
Mapping -Drone measurements



### Intro

#### Why choose remote alpha detection?

- Quickly localize and quantify large-scale contaminated areas
- Reduce exposure to radiation
- Overcome traditional contamination detection techniques


#### Use

- Scan / Map alpha contamination in the environment
- Nuclear facility decommissioning
- Radiological crime scene management

### RemoteALPHA (EMPIR project - EURAMET)

- New detectors and detection methods
- Novel metrological infrastructure
- Fresh studies to take over, develop and use in emergency response plans

### Alpha-induced radioluminescence



 $N_2$ 

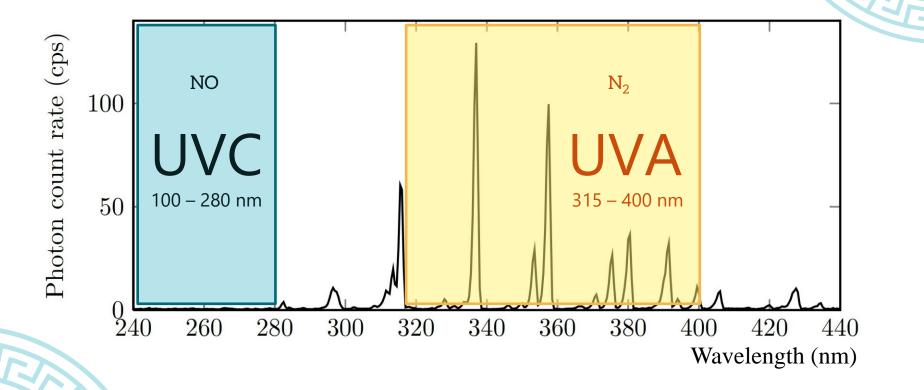
(78)

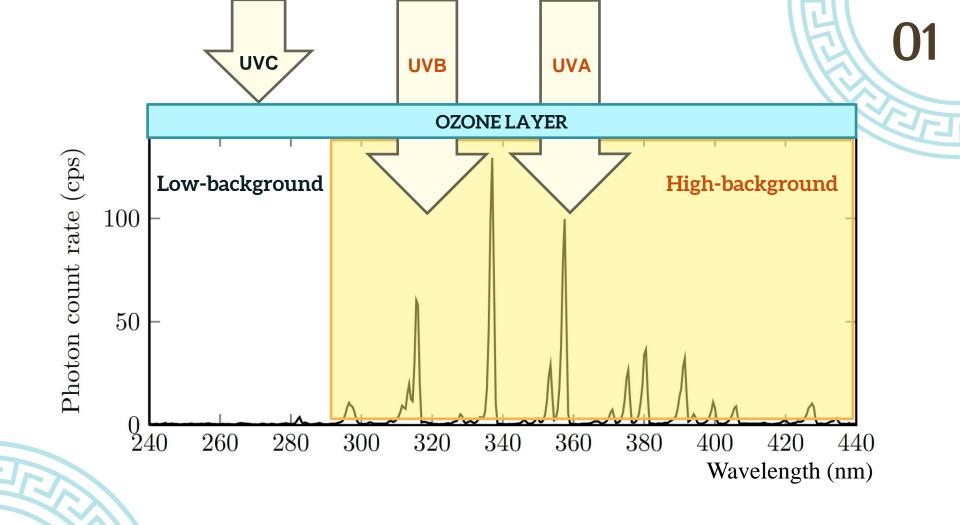
%

#### Alpha particle loses energy in air

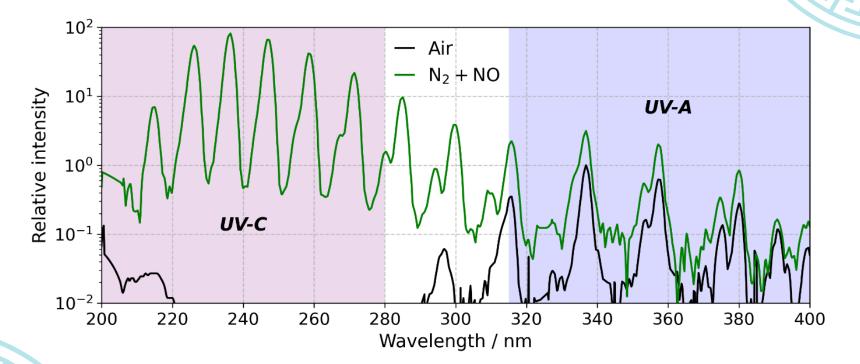
#### Released secondary electrons

#### Electron impact


 $\rightarrow$  ionization and excitation of N<sub>2</sub> and NO molecules to higher energy states


Energy transfer from excited  $N_2$ to ground NO

 $\rightarrow$  excitation of the NO molecule


An excited molecule transitions to a lower energy state by emitting a transition photon.

### **Radioluminescence spectrum**





### **Enhanced radioluminescence**



@ PTB Ion Accelerator Facility - PIAF, measured with a CAS140D spectroradiometer

### **Radioluminescence detection**

= optical detection



Johan Sand @ Alfa Rift & TAU

#### iXon Ultra 897 EMCCD - Andor - Oxford Instruments (oxinst.com)



02

#### Tools:

cameras, photomultiplier tubes, optical filters, optical lens (diameter-important), optical mirrors

### Lens-based systems

Johan Sand @ Alfa Rift & TAU



Ø 100 mm



UVFS lens 89 - 91% UVC - UVA

Ø 240 mm



02

PMMA lens 20 - 90 % UVC - UVA

Ø 450 mm

### **Mirror-based systems**



Ø 75 mm 7-mirror system

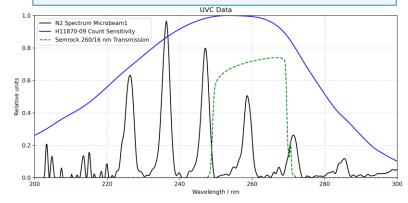


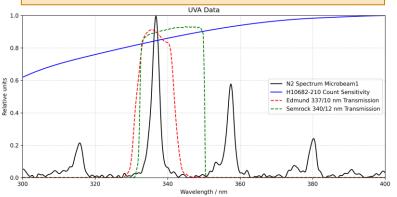
02

12-mirror system

### UV filters + PMTs

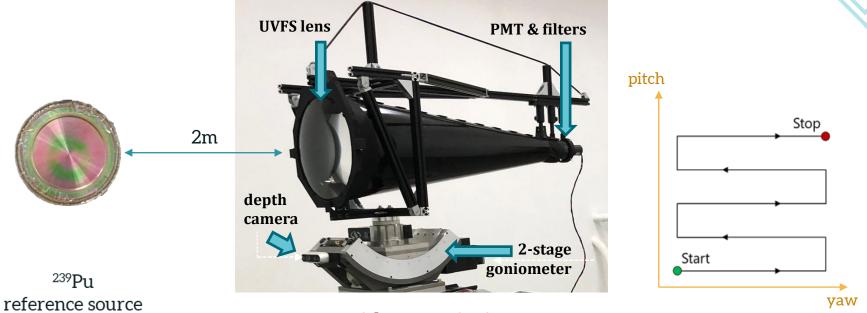
#### UV-C: daytime measurements


- CsTe photocathode PMT
- 260 nm optical filters


#### Advantages & drawbacks

- + Low natural BG → Daylight measurements possible
- About 1% of UVA yield in air

#### UV-A: measurements in dark conditions


- Bialkali photocathode PMT
- 340 nm optical filters
  Advantages & drawbacks
- + High yield / sensitivity
- Can't be applied under solar or conventional lighting



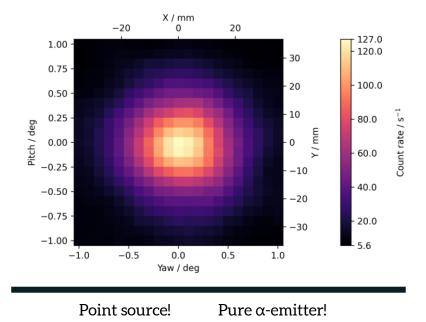


### Scanning

Ø 140 mm



02


UVFS lens Ø 240 mm

### **Activity Standard**

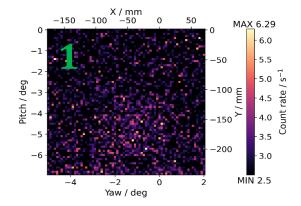
Stefan Röttger @ PTB



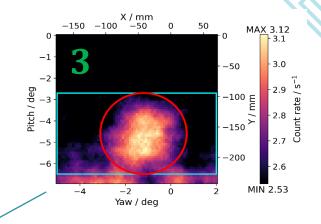
210PO Alpha activity standard Traceable to national standard



 $E_{\alpha} = 5304 \, \text{keV}$ 


 $p_{\alpha} = 99.99876$ 

**A**= 840 kBq


 $T_{1/2} = 138 d$ 

02

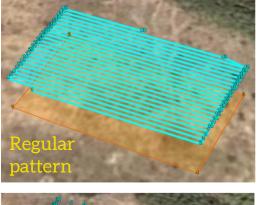
### Scanning



localization



02


#### quantification

$$A_s = k \frac{\Sigma_{\rm net}}{s}$$

| A <sub>s</sub> (kBq) | System     | Time   | Medium |  |
|----------------------|------------|--------|--------|--|
| 5.76 ± 0.51          | Mirrors    | 14 h   | air    |  |
| 5.76 ± 0.65          | Lens       | 13 h   | air    |  |
| 2.58 ± 0.17          | Lens       | 12 min | N2+NO  |  |
| 4.924 ± 0.216        | calculated | -      | -      |  |

### Mapping







#### Technical constraints:

02

- Large diameter
- Small focal length
- Lightweight (<6 kg)
- High sensitivity
- GPS accuracy
- Drone speed
- Wind counteraction
- Altitude control
- No active stabilization

### Mapping – drone measurements



PMMA Fresnel lens, Ø 450 mm, FOV ~ 10 cm

#### Main aerial system

First aerial system for alpha detection developed and characterized at PTB (Germany) drone integration and flight tests in UPC (Spain)

DJI Matrice 600 Pro – improved control accuracy, ease of payload integration

Modified landing gear - integrated into the lens frame

Laser-altimeter – distance to the ground (  $\pm\,$  0.1 m accuracy)

Onboard computer - fuses real-time telemetry and detector count rate data  $\rightarrow$  real-time mapping

()3

<u>RIMASpec</u> software
 Developed @ UPC Spain
 Upgraded for alpha detection

Describes: -position -pointing direction

| Telemetr<br>SPD | V_SPD        | HDG<br>252°<br>YAW<br>-108.3° |  |  |  |
|-----------------|--------------|-------------------------------|--|--|--|
| 0.84 m/s        | -0.01 m/s    |                               |  |  |  |
| РІТСН           | ROLL         |                               |  |  |  |
| -3.7°           | -1.8°        |                               |  |  |  |
| ALT_L           | LAT          | LON                           |  |  |  |
| 9.03 m          | 41.27629137° | 1.98844081                    |  |  |  |
| CPS             |              | CPS N                         |  |  |  |
| 9               |              | 25.6                          |  |  |  |

| Commands |   |   |   |   |   |   |    |  |
|----------|---|---|---|---|---|---|----|--|
| Ŧ        | Ţ | Þ | Ť | X | Ы | Å | Ť  |  |
| 9        | ₾ |   |   | Ш | M | Þ | 50 |  |
|          |   |   |   |   |   |   |    |  |



**⊕**○

Ø

Gob. España, ICGC, Maxar, Microsoft | Source: Airbus,USGS,NGA,NASA,CGIAR,NLS,OS,NMA,Geodatastyrelsen,GSA,GSI and the GIS User Community

Powereo - .



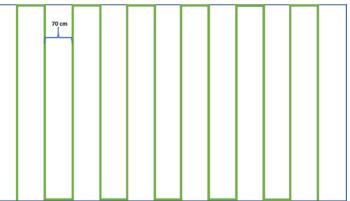
### Mapping – UV sources





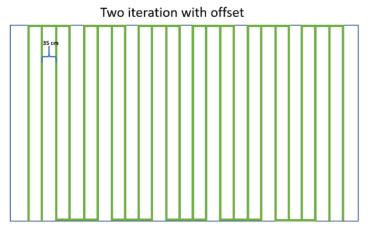
100 MBq <sup>241</sup>Am (100 x 20 mm)

5 LEDs (275 nm)


### Flight planning for alpha detection

Flight planning for **point alpha source** detection:

Optimal value of the **FOV** - 10.7 cm at 5 meters


- mapping performed at **5m height**
- plan tracks should be very close together (10 cm), limited at **70 cm**
- drone speed very slow at  $1\,m\,s^{\text{-}1}$
- integration time short  ${\bf 0.1\,s}$

One iteration



Scan pattern: back and forth

If the sources are not detected in the first iteration of the flight plan, a second iteration with an offset is performed.







### Flight tests performed at the UPC DroneLab

Preliminary flights (only LEDs) 5 flights – probability of detection 60 %

1 flight – detection of 4/5 LEDs and Am-241 (center)

> Localization of alpha contamination only in UVC

03

### 03

### **Recommendations – use in EP**

- Usage of UVC spectral range
- Maximize FOV of the system (for point sources)
- Use short integration time to increase the probability of detection
- Short distance between flight lines
- Slow speed



( ( 😔 RemoteALPHA



### Remote and real-time optical detection of alpha-emitting radionuclides in the environment





Visit the project website <u>for more information</u>:

- ✓ Publications
- ✓ Presentations
- ✓ Posters

https://remotealpha.drmr.nipne.ro

faton.krasniqi@ptb.de maksym.luchkov@ptb.de



### Acknowledgements

The project 19ENV02 **RemoteALPHA** has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. 19ENV02 RemoteALPHA denotes the EMPIR project reference.

#### **RemoteALPHA** partners



# Thanks!

Do you have any questions?

**CREDITS:** This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik** 

