



The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States



Development of scanning optical systems and Radioluminescence calibration sources for

# Remote detection of alpha emitters

## Maksym Luchkov



maksym.luchkov@ptb.de Radiation Protection Dosimetry National Metrology Institute of Germany (PTB) Braunschweig, Germany



## Content







Remote and real-time optical detection of alpha-emitting radionuclides in the environment (2020 – )



WP1. New instrumentation for the optical detection of alpha particle emitters in the environment



WP2. Calibration system for the novel-type radioluminescence detector systems



WP3. Mapping of alpha contaminations in the environment using UAVs



WP4. Feasibility study of laser-based techniques for detection of alpha emitters







### UV-C: daytime measurements

- Fused silica / Aluminum optics
- CsTe photocathode PMT
- > 260 nm optical filters

#### Advantages & drawbacks

+ Low natural BG → Daylight measurements possible
– About 1% of UVA yield in air

UVC Data

### UV-A: measurements in dark conditions

- PMMA Fresnel optics applicable
- Bialkali photocathode PMT
- ➢ 340 nm optical filters

#### Advantages & drawbacks

- + High yield / sensitivity
- Can't be applied under solar or conventional lighting





## Instrumentation 1/3





UVFS lens, Ø 240 mm Scanning



Al mirrors, Ø 75 mm x 7 Scanning + Drone-based



Fresnel lens, Ø 450 mm Drone-based



## Instrumentation 2/3





### Fresnel lens, Ø 450 mm

Main aerial system

- Detector developed and characterized in PTB
- Drone integration and flight tests in UPC, Spain





## Al mirrors, Ø 75 mm x 7

Auxiliary system (compact)

- Detector developed and characterized in PTB
- Drone integration and flight tests in PTB (planned)





## Instrumentation 3/3





3D model of a motion base to solve inverse kinematics (SolidWorks)



| Power efficient and lightweight!        |                 |  |  |  |  |  |  |
|-----------------------------------------|-----------------|--|--|--|--|--|--|
| 12-mirror system power consumption      | 100 W<br>(max.) |  |  |  |  |  |  |
| LiPo battery<br>11.1V 20 Ah             | 222 Wh          |  |  |  |  |  |  |
| Regular scanning<br>(continuous motion) | ≈ 2.5 h         |  |  |  |  |  |  |
| Low-power scanning<br>(discrete steps)  | > 5 h           |  |  |  |  |  |  |



```
An assembled motion base.
Total weight = 300 g
```

# PTB Blending UV and camera images NPL



#### Stereo depth image (2 IR cameras + texture projector)



3D model of the environment, a.k.a. "pointcloud"



2D (pitch/yaw) UV scan



The known offset of the camera and UV imagers allows ray tracing







The scanning **objective** is to **distinguish the source** over the background within the **reasonable** (*better: shortest*) **time** period



The **averaging** of a neighboring pixel group (blurring) is **necessary** to get a **uniform background** and **reveal** scan **features** 





# Calibration 1/3







## Calibration 2/3







# Calibration 3/3



672000

600000

500000

400000

300000

200000

- 100000

0

Count rate /



107

106

105

101

Simulated J

point

## Adjustable photon flux!

0.5

1.0

- Calibrated against the activity standard •
- Simulates point source equivalent • activity from 80 kBq to 800 MBq

n

20

40

40

20

-40

1.5

۲ / mm



10-2

Typical dark /BG

Slit width / mm

100

 $10^{-1}$ 

PMT count rate /  $s^{-1}$ 

10<sup>3</sup>

10<sup>2</sup>

10<sup>1</sup>

 $10^{0}$ 



## Results 1/2



- > <sup>241</sup>Am source
- ≻ Ø 3 mm
- Point source
- ≻ A = 0.5 MBq
- > 2 m distance





- Alpha beam
- ➤ E = 6.9 MeV
- Stopping in air
- ≻ 100 µm x 100 µm
- ≻ A = 1 MBq
- > 2 m distance





## Results 2/2





- Env. samples
   (Pitchblende),
   polished
- > A ≈ 1 kBq

(each)

2 m distance





Acknowledgements







The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Projects 19ENV02 **RemoteALPHA** have received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

19ENV02 RemoteALPHA denotes the EMPIR project reference.

### **RemoteALPHA** partners





# Thanks for attention!



### https://remotealpha.drmr.nipne.ro



🛛 🗐 🕀 RemoteALPHA



The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Remote and real-time optical detection of alpha-emitting radionuclides in the environment

Interested in the project?

Join the stakeholder

community:

- Workshop / exhibition
   May, Barcelona, Spain
- Feedback / discussion



Visit the project website

for more information:

- ✓ Publications
- ✓ Presentations
- ✓ Posters
- ✓ ...and more!

| Home                                                                                        | Project - | Information - | Members Area | Blog | Contact | GDPR |  |  |
|---------------------------------------------------------------------------------------------|-----------|---------------|--------------|------|---------|------|--|--|
| CARM2023: Development of scanning optical systems and radioluminescence calibration sources |           |               |              |      |         |      |  |  |